
In-Memory Database Systems (IMDSs):

Pushing Past the Terabyte-Plus Boundary

A BENCHMARK REPORT

Abstract: In-memory database systems (IMDSs) hold out the promise of breakthrough

performance for time-sensitive, data-intensive tasks. Yet IMDSs’ compatibility with very large
databases (VLDBs) has been largely uncharted. This benchmark analysis fills the information gap
and pushes the boundaries of IMDS size and performance. Using McObject’s 64-bit eXtremeDB®
technology, the application creates a 1.17 Terabyte, 15.54 billion row database on a 160-core
Linux-based SGI® Altix® 4700 server. It measures time required for database provisioning,
backup and restore. In SELECT, JOIN and SUBQUERY tests, benchmark results range as high
as 87.78 million query transactions per second. The report also examines efficiency in utilizing all
of the test bed system’s 160 processors and includes full database schema and relevant

application source code.

McObject LLC
33309 1st Way South

Suite A-208

Federal Way, WA 98003

Phone: 425-888-8505

E-mail: info@mcobject.com

www.mcobject.com

Copyright 2013-2025, McObject LLC

Introduction

The Louisiana Immersive Technologies Enterprise (LITE), hosted in the Research Park

of the University of Louisiana at Lafayette, is a facility designed for exploring

technological boundaries. LITE recently added a massive computing component to its

already world-leading infrastructure: a 160-processor SGI® Altix® 4700 server with 4.1

terabytes of memory.

The acquisition positions LITE in the top echelon of computing resources available for

private and public sector projects. The facility targets the most demanding analytical

tasks: seismic modeling for energy exploration, signals and imagery intelligence for the

military, business intelligence, real-time automobile impact simulations, geospatial

analysis, and many other projects that require crunching vast amounts of data in limited

time.

In short, LITE is ideally equipped as a proving ground for the kinds of performance-

intensive technology sought by forward-looking companies to gain competitive

advantage.

One such technology is the in-memory database system (IMDS), a type of database

management system (DBMS) software used in high performance applications including

data analytics, securities trading, telecommunications, real-time military/aerospace,

embedded systems, and science and engineering applications. IMDSs eliminate disk

access, storing data in main memory and sending changes to the system’s hard disk (if

there is one) only when specified by the application. In contrast, traditional ‘on-disk’

DBMSs cache frequently requested data in memory for faster access, but automatically

write data updates, insertions, and deletes through to disk—a requirement that imposes

often unacceptable levels of mechanical and logical overhead on application

performance.

IMDSs’ streamlined, all-in-memory operation makes them very fast. Because IMDSs are

relatively new (commercial versions emerged some 10 years ago), the technology’s

boundaries are still being explored. Is there a maximum size, measured in bytes or

database rows/records, for an in-memory data store? What are the outer limits of IMDS

performance? The goal of this benchmark test is to explore these IMDS boundaries.

LITE’s sheer computing horsepower qualifies the facility for IMDS benchmarking, and

its choice of SGI Altix servers, with their efficient memory use and sophisticated multi-

processing support, make it an especially valuable test bed. Altix offers the industry’s

most scalable system for global shared memory—up to 24TB of globally addressable

memory in a system. In addition, the SGI NUMAlink Interconnect Fabric allows multiple

CPU nodes to be tightly integrated, so that all the pieces of memory are seen as one, and

in-memory database queries and other operations can be spread evenly across multiple

processors.

Benchmark Goals

The goals for the benchmark were to demonstrate that a 64-bit in-memory database

system could provision a terabyte-size database efficiently (no IMDS vendor has

published a benchmark involving a terabyte or more of data), and that every available

CPU core could be exercised in parallel to run multiple queries and maintain nearly linear

performance scalability (i.e. if one processor core can execute a given query in 2

microseconds, then the same query could be executed on 160 processor cores

simultaneously with elapsed time as close to 2 microseconds as possible).

The test environment was LITE’s SGI Altix 4700 system with 80 dual-core 1.6 Ghz

Itanium 2 processors (160 cores total) and 4 terabytes of RAM. LITE provided access to

the system, and the IMDS used for the benchmark was the 64-bit version of McObject’s

eXtremeDB® in-memory database system. McObject launched eXtremeDB in 2001 and

its customers use the IMDS in software applications ranging from securities trading

systems to military/aerospace equipment and industrial control. The 64-bit operating

system for the benchmark test was SUSE Linux Enterprise Server 9, optimized with

SGI’s ProPack software for performance and stability.

Benchmark Application

For the benchmark, engineers created a simple database structure consisting of two

tables: a PERSONS table and an ORDER table. These tables represent the two sides of

any generic transaction such as the examples given in Listing 1 below. In all such cases,

there are two instances of a ‘person’ (one for each side of the transaction) and one

instance of an ‘order’ that represents the transaction between the two entities.

ORDER table

role

1st PERSON

instance role

2nd PERSON instance

role

Gift giver receiver

Trade

Execution

buyer seller

Call Record caller callee

Listing 1 – the roles of ORDER and PERSON tables in different types of transactions.

Obviously, this database structure can be embellished to include any sort of demographic

or other information that would help to increase the application’s business value.

Following are examples of the PERSONS and ORDERS tables.

PERSON ID NAME ADDRESS

1 Steve Graves Issaquah, WA

2 Andrei Gorine Issaquah, WA

3 Ted Kenney Issaquah, WA

Listing 2 – example data of the PERSONS table.

ORDER ID SENDER

ID

RECEIVER

ID

TOTAL

ORDERS

FIRST

ORDER

DATE

LAST

ORDER

DATE

1 1 2 2 11/1/2006 11/30/2006

2 1 3 2 11/1/2006 11/30/2006

3 2 1 1 11/1/2006 11/1/2006

Listing 3 – example data of the ORDERS table

The simple data definition in native eXtremeDB DDL syntax is shown in figure 1, and in

SQL syntax in figure 2.

#define uint8 unsigned<8>

declare database spdb;

class persons {

 uint8 PERSON_ID;

 char<30> NAME;

 char<30> ADDRESS;

 hash<PERSON_ID> hkey[6000000000];

};

class orders {

 uint8 ORDER_ID;

 uint8 SENDER_ID;

 uint8 RECEIVER_ID;

 uint8 TOTAL_ORDERS;

 date FIRST_ORDER_DATE;

 date LAST_ORDER_DATE;

 hash<ORDER_ID> hkey[25000000000];

 voluntary tree<SENDER_ID,RECEIVER_ID> hkey2;

 voluntary tree<SENDER_ID> hkey3;

};

Figure 1.

CREATE TABLE persons(

 PERSON_ID BIGINT PRIMARY KEY UNIQUE,

 NAME char(30),

 ADDRESS char(30)

)

CREATE TABLE orders(

 ORDER_ID BIGINT PRIMARY KEY UNIQUE,

 SENDER_ID BIGINT,

 RECEIVER_ID BIGINT,

 TOTAL_ORDERS BIGINT,

 FIRST_ORDER_DATE datetime,

 LAST_ORDER_DATE datetime

)

CREATE INDEX hkey2 ON orders (SENDER_ID)

CREATE INDEX hkey3 ON orders (SENDER_ID,RECEIVER_ID)

Figure 2.

Regardless of whether the database is defined with the native eXtremeDB DDL or SQL

DDL, the database can be accessed by either eXtremeDB’s native application

programming interface or by its SQL API (eXtremeSQL). The choice to define the

database schema in one DDL or the other is based on the database designer’s preference

and will not affect database application performance.

To populate the database, engineers created an array of 30,000 random strings and

selected random elements from the array to populate the NAME and ADDRESS

columns. In the benchmark application, unique values for PERSON_ID and ORDER_ID

are generated sequentially, optionally from a starting value supplied on the command

line.

The number of PERSON objects created is specified on the command line. For this test,

engineers created 3 billion PERSONS records (rows) and 12.54 billion ORDERS records

(rows), resulting in a database size of 1.17 terabytes.

Does this constitute a very large database? Consider that the Winter Corporation, a

research and consulting firm, surveys major corporations including Amazon.com, Dell

and AT&T annually to identify the world’s largest and most heavily used databases. In

Winter Corporation’s 2005 survey results, as published on its Web sitei, a 1.229 terabyte

database ranks as the fourth largest Linux on-line transaction processing (OLTP)

database. A 12.54 billion row database, such as the one created for this benchmark,

would rank as the second-largest in this category (Linux OLTP) of Winter Corporation’s

survey.

The inescapable conclusion is that a database consisting of a 3 billion row table and a

12.54 billion row table is a very large database.

All of the benchmark implementation code can be executed using the native eXtremeDB

programming interface or McObject’s implementation of the SQL database language.

The native interface executes substantially faster than SQL by avoiding the overhead of

SQL parsing, optimization and execution. The native interface goes directly to the table

and navigates the database indexes and data via an intuitive, type-safe programming

interface that is generated when the DDL file is processed by the schema compiler. For

straightforward queries, the native interface can be as easy, and in some cases easier, to

program as the SQL API.

Though slower due to the necessary parsing, optimization and execution steps, the SQL

implementation has the advantage of familiarity – SQL is known by many programmers

– and of being potentially easier to program, especially for complex queries involving

many joins, aggregation, and/or complex filters, or when the result set must be sorted in

an order that is not directly supported by indexes defined in the DDL. (The latter

advantage of SQL would only occur in situations requiring ad hoc queries. When queries

are known in advance, database designers can create appropriate indexes.)

eXtremeDB offers programmers the choice: the unsurpassed performance of a direct

native interface, or the convenience of SQL for complex queries or when flat-out

performance is not required.

Performance – Ingest

The following graphs depict the performance of provisioning the eXtremeDB database

with the 15.54 billion rows of test data.

Chart 1 – Microseconds per row ingest performance.

Ingest (u-sec per row)

0

1

2

3

4

5

6

7

8

9

Fill factor (0%, 25%, 50%, 75%)

M
ic

ro
s
e
c
o

n
d

s

Chart 2 – Rows per second ingest performance.

Chart 3 – Ingest performance: Elapsed time.

The total time to provision the 1.17 terabyte, 15.54 billion row database was just over 33

hours. The per-row insert time for the last quartile of data was a very respectable 8.3

microseconds. The per-row insert time for the first quartile of data was 6.9 microseconds.

Ingest performance between first and last quartile decreased by just 20 percent – much

less than the precipitous performance drop-off that is often predicted for the later stages

of populating a very large database.ii

It is important not to confuse the time required to ingest a data set, with the time needed

to back up the data once it has been loaded, or to restore it after potential failure. As part

of this benchmark test, engineers backed up the fully provisioned in-memory database in

Ingest (rows per second)

0

20000

40000

60000

80000

100000

120000

140000

160000

Fill factor (0%, 25%, 50%, 75%)

R
o

w
s
 p

e
r

s
e
c
o

n
d

Ingest (elapsed time)

0

20000

40000

60000

80000

100000

120000

140000

Fill factor (0%, 25%, 50%, 75%)

S
e
c
o

n
d

s

elapsed seconds

cumulative seconds

4.3 hours, and restored it in 4.76 hours. So, while initial ingest took 33 hours, the

database could be saved and reloaded for subsequent use in a fraction of that time. (And,

once reloaded, it can be extended with new data.) Backing up and restoring the

provisioned database is a simple matter of streaming the in-memory image to persistent

storage; there is no need to allocate pages, assign records to pages, maintain indexes, etc.,

so back up and restore performance is largely a function of the speed of the persistent

media.

Backup and restore capabilities are especially important when working with in-memory

database systems because these functions are the primary means to achieve data

persistence. While IMDSs have persistence mechanisms such as transaction logging, the

types of applications served by IMDSs for data analysis have data persistence needs that

differ from most mainstream enterprise systems. Data mining, modeling and other

analytics applications exist to process data in its transient state, rather than provide long-

term storage. Therefore backup and restore functions are generally considered sufficient

to provide persistence for such applications.

Performance – Select, Join and Subquery

The following tables depict the performance of eXtremeDB executing queries against the

1.17 terabyte database consisting of 3 billion rows of the PERSONS table and 12.54

billion rows of the ORDERS table. On average, each row of the PERSONS table has

4.18 related ORDERS rows (min = 1, max = 22).

The tests were run with varying numbers of threads (1, 80 and 160).

The first test was a simple query:

SELECT name FROM persons WHERE person_id = ?

The code in the eXtremeDB native interface is shown in figure 3, and the SQL interface

in figure 4.

int rawSelect(mco_db_h pdb, mco_trans_h t,uint8 pID)

{

 mco_trans_h pt=t;

 persons P;

 char buf[50];

 uint4 rCnt=0;

 int rs=MCO_S_OK;

 mco_puint l0;

 if (!pt)

 if ((rs = mco_trans_start(pdb, MCO_READ_ONLY,

 MCO_TRANS_FOREGROUND, &pt))!= MCO_S_OK)

 {

 printf("Cant create transaction!\n");

 return rs;

 }

 if (persons_hkey_find(pt, pID, &P) == MCO_S_OK)

 {

 // load person_name

 persons_NAME_get(&P,buf,50);

 if (rs == MCO_S_OK) rCnt++;

 }

if (!t)

 mco_trans_commit(pt);

 return rCnt;

}

Figure 3 – eXtremeDB native programming interface

implementation of a simple SELECT.

void doSelect(int tid, void* pThrParam, mco_trans_h t, uint4 cnt)

{

 uint4 i;

 STAT_DATA_R* pstat=0;

 SQLHSTMT hStmt;

 SQLHDBC hDbc = (SQLHDBC)pThrParam;

 uint8 personId;

 SQLAllocStmt(hDbc, &hStmt); // allocate statement

 SQLPrepare(hStmt,

 (SQLCHAR*)"SELECT NAME FROM persons WHERE PERSON_ID = ?",

 SQL_NTS); // prepare query

 SQLBindParameter(hStmt, 1, SQL_PARAM_INPUT, SQL_C_UBIGINT,

 SQL_BIGINT, 0, 0, &personId, 0, NULL);

 for (i = 0;i < cnt; i++)

 {

 personId = getPerson(tid);

 SQLExecute(hStmt); // execute prepared statement

 SQLCloseCursor(hStmt); // release result set

 }

 SQLFreeStmt(hStmt, SQL_DROP); // drop statement

}

Figure 4 – eXtremeDB SQL implementation of a simple SELECT.

Chart 4 – SELECT performance of the eXtremeDB native interface in microseconds-per-

query.

Chart 5 – SELECT performance of the eXtremeDB native interface in queries-per-

second.

Chart 6 – SELECT performance of SQL ODBC API in microseconds-per-query.

Select

0.00000000

0.50000000

1.00000000

1.50000000

2.00000000

Threads (1, 80, 160)

M
ic

ro
s
e
c
o

n
d

s
 p

e
r

Q
u

e
ry

Select

87,781,589

82,028,889

1,190,488

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

Threads (1, 80, 160)

Q
u

e
ri

e
s
 p

e
r

S
e
c
o

n
d

Select

2.00000000

3.00000000

4.00000000

5.00000000

6.00000000

7.00000000

Threads (1, 80, 160)

M
ic

ro
s
e
c
o

n
d

s
 p

e
r

q
u

e
ry

Chart 7 – SELECT performance of eXtremeDB SQL in queries-per-second.

Just how fast is a performance of 87.7 million query transactions per second, delivered by

the eXtremeDB 64-bit in-memory database system for Linux, using its native API and

running on SGI’s 160-core server? And how fast is the 28.2 million queries per second

achieved using eXtremeDB’s ODBC SQL API?

Comparing transaction processing performance between different applications in

different operating environments is notoriously tricky. But to put the benchmark result of

87.7 million queries per second in perspective, consider that the “standard currency” of

such comparisons is transactions per minute. For example, Microsoft in late 2005

announced the SQL Server database’s new “world record” in Microsoft Windows-based

on-line transaction processing of more than 1 million transactions per minute (or

16,666.67 transactions per second). “SQL Server has once again demonstrated that it is

capable of handling the most demanding online transaction processing (OLTP)

workloads,” the company stated on its Web site, announcing SQL Server’s entry into the

“1 million transactions per minute club.” We provide this comparison for illustration

purposes only and it is not intended to suggest that the benchmark described herein is

similar to the TPC-C or TPC-H benchmarks referenced in Microsoft’s announcement.

The second test was a query with a three-table join:

SELECT A.NAME, C.NAME, B.ORDER_ID, B.TOTAL_ORDERS,

B.FIRST_ORDER_DATE, B.LAST_ORDER_DATE FROM persons A, orders B,

persons C WHERE A.PERSON_ID = ? AND A.PERSON_ID = B.SENDER_ID AND

C.PERSON_ID = B.RECEIVER_ID

The code in the eXtremeDB native interface is shown in figure 4, and the eXtremeDB

SQL interface in figure 5.

Select

315,010

28,214,411

15,033,769

300000

10300000

20300000

Threads (1, 80, 160)

Q
u

e
ri

e
s
 p

e
r

S
e
c
o

n
d

int rawJoin(mco_db_h pdb,mco_trans_h t,uint8 pID,

 struct STAT_DATA_R** pstat)

{

 mco_trans_h pt=t;

 orders T; //B

 persons P1; //A

 persons P2; //C

 uint8 rcv;

 mco_cursor_t cr;

 int rss;

 uint4 rCnt=0;

 int rs=MCO_S_OK;

 if (!pt)

 if ((rs = mco_trans_start(pdb, MCO_READ_ONLY,

 MCO_TRANS_FOREGROUND, &pt)) != MCO_S_OK)

 {

 printf("Can’t create transaction!\n");

 return rs;

 }

 if (persons_hkey_find(pt, pID, &P1) == MCO_S_OK)

 {

 // person with ID found ...

 // searching for sender_id==% records...

 if (orders_hkey3_index_cursor(pt, &cr) == MCO_S_OK)

 {

 rs = orders_hkey3_search(pt,&cr,MCO_EQ,pID);

 while(rs == MCO_S_OK)

 {

 // load receiver_id && hash search

 orders_from_cursor(pt, &cr, &T);

 rs = orders_hkey3_compare(pt, &cr, pID, &rss);

 if(rs == MCO_S_OK && rss != 0)

 break;

 orders_RECEIVER_ID_get(&T, &rcv);

 if(rs == MCO_S_OK &&

 persons_hkey_find(pt, rcv, &P2) == MCO_S_OK)

 rCnt++;

 if(rs == MCO_S_OK)

 rs = mco_cursor_next(pt, &cr);

 }

 }

 }

 if (!t)

 mco_trans_commit(pt);

 return rCnt;

}

Figure 5 – eXtremeDB native programming interface

implementation of a three-table JOIN.

void doJoin(int tid, void* pThrParam, mco_trans_h t, uint4 cnt)

{

 uint4 i;

 STAT_DATA_R* pstat=0;

 SQLHDBC hDbc = (SQLHDBC)pThrParam;

 SQLHSTMT hStmt;

 uint8 personId;

 SQLAllocStmt(hDbc, &hStmt); // allocate statement

 SQLPrepare(hStmt,

 (SQLCHAR*)"SELECT A.NAME, C.NAME, B.ORDER_ID,"\

" B.TOTAL_ORDERS, B.FIRST_ORDER_DATE, B.LAST_ORDER_DATE FROM"\

" persons A, orders B, persons C WHERE A.PERSON_ID = ? AND "\

" A.PERSON_ID = B.SENDER_ID AND C.PERSON_ID = B.RECEIVER_ID",

 SQL_NTS); // prepare query

 SQLBindParameter(hStmt, 1, SQL_PARAM_INPUT, SQL_C_UBIGINT,

 SQL_BIGINT, 0, 0, &personId, 0, NULL);

 for (i=0;i<cnt;i++)

 {

 personId = getPerson(tid);

 SQLExecute(hStmt); // execute prepared statement

 SQLCloseCursor(hStmt); // release result set

 }

 SQLFreeStmt(hStmt, SQL_DROP); // drop statement

}

Figure 6 – eXtremeDB ODBC implementation of a three-table JOIN.

Chart 8 – JOIN performance of the eXtremeDB native interface in microseconds-per-

query.

Join

13.8

13.9

14

14.1

14.2

14.3

14.4

14.5

Threads (1, 80, 160)

M
ic

ro
s
e
c
o

n
d

s

p
e
r

Q
u

e
ry

Chart 9 – JOIN performance of the eXtremeDB native interface in queries-per-second.

Chart 10 – JOIN performance of the eXtremeDB SQL ODBC interface in microseconds-

per-query.

Join

11,134,130

5,591,522

71,310

0

2000000

4000000

6000000

8000000

10000000

12000000

Threads (1, 80, 160)

Q
u

e
ri

e
s
 p

e
r

S
e
c
o

n
d

Join

31

32

33

34

35

36

37

38

Threads (1, 80, 160)

M
ic

ro
s
e
c
o

n
d

s
 p

e
r

Q
u

e
ry

Chart 11 – JOIN performance of the SQL ODBC interface in queries-per-second.

The third and final test was a subquery:

SELECT * FROM persons

WHERE PERSON_ID IN

(SELECT RECEIVER_ID FROM orders

WHERE SENDER_ID IN

(SELECT RECEIVER_ID FROM orders WHERE SENDER_ID = ?))

The code in the eXtremeDB native interface is shown in figure 6, and the SQL interface

in figure 7.

Join

4,355,272

2,203,122

30,170

0

2000000

4000000

6000000

Threads (1, 80, 160)

Q
u

e
ri

e
s
 p

e
r

S
e
c
o

n
d

int rawSubquery(mco_db_h pdb, mco_trans_h t, uint8 pID,

 struct STAT_DATA_R** pstat)

{

 mco_trans_h pt = t;

 persons P;

 uint8 rcv1, rcv2;

 orders T1, T2;

 mco_cursor_t cr1, cr2;

 int rss;

 uint4 rCnt=0;

 int rs = MCO_S_OK;

 if (!pt)

 if ((rs = mco_trans_start(pdb, MCO_READ_ONLY,

 MCO_TRANS_FOREGROUND, &pt)) != MCO_S_OK)

 {

 printf("Cant create transaction!\n");

 return rs;

 }

 // searching for sender_id == % records... A

 if (orders_hkey3_index_cursor(pt, &cr1) == MCO_S_OK)

 {

 rs = orders_hkey3_search(pt, &cr1, MCO_EQ, pID);

 while(rs == MCO_S_OK)

 {

 // load reciever_id && srch2

 orders_from_cursor(pt, &cr1, &T1);

 rs = orders_hkey3_compare(pt, &cr1, pID, &rss);

 if(rs == MCO_S_OK && rss != 0)

 break;

 orders_RECEIVER_ID_get(&T1, &rcv1);

 if(rs == MCO_S_OK)

 {

 if(orders_hkey3_index_cursor(pt, &cr2) ==

 MCO_S_OK)

 {

 rs = orders_hkey3_search(pt, &cr2,

 MCO_EQ, rcv1);

 while(rs == MCO_S_OK)

 {

 // load receiver_id && hash srch

 orders_from_cursor(pt, &cr2, &T2);

 rs = orders_hkey3_compare(pt, &cr2,

 rcv1, &rss);

 if (rs == MCO_S_OK && rss != 0)

 break;

 orders_RECEIVER_ID_get(&T2, &rcv2);

 if (rs == MCO_S_OK &&

 persons_hkey_find(pt, rcv2, &P)

 == MCO_S_OK)

 rCnt++;

 if (rs == MCO_S_OK)

 rs = mco_cursor_next(pt,

 &cr2);

 }

 }

 rs = mco_cursor_next(pt,&cr1);

 }

 }

 }

 if (!t)

 mco_trans_commit(pt);

 return rCnt;

}

Figure 7 – eXtremeDB native programming interface

implementation of a SUBQUERY.

void doSubquery(int tid, void* pThrParam, mco_trans_h t, uint4 cnt)

{

 SQLHDBC hDbc = (SQLHDBC)pThrParam;

 SQLHSTMT hStmt;

 uint8 personId;

 SQLAllocStmt(hDbc, &hStmt); // allocate statement

 SQLPrepare(hStmt,

 (SQLCHAR*)"SELECT * FROM persons WHERE "\

" PERSON_ID IN (SELECT RECEIVER_ID FROM orders "\

" WHERE SENDER_ID IN (SELECT RECEIVER_ID FROM orders"\

" WHERE SENDER_ID=?))",

 SQL_NTS)); // prepare query

 SQLBindParameter(hStmt, 1, SQL_PARAM_INPUT, SQL_C_UBIGINT,

 SQL_BIGINT, 0, 0, &personId, 0, NULL);

 uint4 i;

 for (i = 0; i < cnt; i++)

 {

 personId = getPerson(tid);

 SQLExecute(hStmt); // execute prepared statement

 SQLCloseCursor(hStmt); // release result set

 }

 SQLFreeStmt(hStmt, SQL_DROP); // drop statement

}

Figure 8 – eXtremeDB SQL ODBC implementation of a SUBQUERY.

Chart 12 – SUBQUERY performance of the eXtremeDB native interface in

microseconds-per-query.

Chart 13 – SUBQUERY performance of the eXtremeDB native interface in queries-per-

second.

Subquery

62.8

62.9

63

63.1

63.2

63.3

63.4

63.5

63.6

63.7

Threads (1, 80, 160)

M
ic

ro
s
e
c
o

n
d

s
 p

e
r

Q
u

e
ry

Subquery

2,514,055

1,258,691

15,846

0

500000

1000000

1500000

2000000

2500000

3000000

Threads (1, 80, 160)

Q
u

e
ri

e
s
 p

e
r

S
e
c
o

n
d

Chart 14 – SUBQUERY performance of the eXtremeDB SQL ODBC interface in

microseconds-per-query.

Chart 15 – SUBQUERY performance of the eXtremeDB SQL ODBC interface in

queries-per-second.

Observations

Comparing the JOIN charts with the SELECT charts we can see that the SELECT charts

show less performance improvement between 80 and 160 threads compared to the

improvement between 1 and 80 threads. This a function of the random memory access

inherent in the SELECT queries—where the test application conducts searches for

Subquery

81

82

83

84

85

86

87

88

89

Threads (1, 80, 160)

M
ic

ro
s
e
c
o

n
d

s
 p

e
r

Q
u

e
ry

Subquery

1,823,382

916,386

11,980

0

1000000

2000000

Threads (1, 80, 160)

Q
u

e
ri

e
s
 p

e
r

S
e
c
o

n
d

random values of a unique key that return a single row and how that specific test

application’s interacts with the NUMA architecture. Due to the random nature of the test,

it is unlikely that a given row will be found in the local CPU cache, thus causing the

cache line to be invalidated and reinitialized for any given query.

In contrast, the JOIN (and, later, SUBQUERY) tests exploit the “locality of reference”

principle: when the database is provisioned, related rows are more likely to be placed on

the same or adjacent pages so that the loop to fetch each matching row of the query is

satisfied by data that was loaded into the CPU cache by the first row. Accordingly, there

is more linear improvement in the total number of queries-per-second for the JOIN at 1,

80 and 160 threads, respectively. Put another way, the number of cache invalidations per

row returned is far less, leading to a more uniform improvement in performance as the

number of threads is scaled up.

Conclusion

The test results met expectations set by the 64-bit eXtremeDB’s performance in tests

involving somewhat smaller databases, and delivered truly groundbreaking results in the

size of databases managed entirely in memory. The test proved that eXtremeDB can

support an arbitrarily large number of concurrent processes/threads and deliver consistent

performance. Performance did not degrade significantly with increased database size.

The performance observed was in line with performance obtained with much smaller

databases, given a processor clock speed of 1.6 Ghz.

The test proved that eXtremeDB can scale up to in-memory database sizes previously

unexplored, and that the database load (“ingest”) performance is largely unaffected by

database size.

These results have important implications for organizations contemplating the next

generation of high-performance applications that must process terabytes of data to guide

high-level decisions, cutting-edge science or groundbreaking creative work. In-memory

databases, while integrated in time-sensitive and embedded applications by many major

corporations, are still viewed as somewhat exotic by many IT managers. The results of

this benchmark test performed on off-the-shelf hardware and software indicate that:

• In-memory database size, measured either in terabytes or numbers of rows, can

grow to well within the range of the largest corporate on-disk databases, with

performance intact;

• Very large in-memory databases can be processed with outstanding performance

using industry standard SQL or with the vendor’s native application programming

interface, and use of the native API provides a unique opportunity for

optimization;

• For high-performance applications, an IMDS-based application can achieve:

o QUERY performance of less than two microseconds per operation, or

completion of more than 87.78 million queries per second;

o JOIN performance under 14.5 microseconds per operation, or completion

of more than 11.13 million joins per second.

o SUBQUERY performance under 63.7 microseconds per operation, or

more than 2.5 million subqueries per second

• Nearly linear scalability from a single processor core up to 160 processor cores

can be achieved using the combination of McObject’s 64-bit eXtremeDB in-

memory database system and SGI’s highly optimized hardware, with some minor

and unavoidable drop-off in scalability occurring for operations that involve a

higher proportion of system “housekeeping”;

• IMDSs ingest data efficiently, with only a moderate decrease in performance as

database size grows into the terabyte range;

• Backup and restore functions for this very large database required just a fraction

of the time needed for initial provisioning, suggesting the persistence needs of

time-sensitive, data-intensive applications can be met without undue latency.

The majority of organizations now employ “traditional” on-disk databases even for time-

sensitive applications involving very large data stores. It is likely that on-disk data

management will remain at the core of the installed base of traditional applications for the

foreseeable future. But organizations are augmenting their IT infrastructure with new

systems that exploit high performance hardware and software, in order to gain a

competitive advantage. Many of these new systems, in fields ranging from business

intelligence to pharmaceuticals research, are intended for tasks that are much more time-

sensitive and data-intensive than older enterprise systems such as human resources and

finance.

The results of this benchmark report indicate that IMDS technology meets the scalability

requirements of this new category of application, and delivers dramatically faster query,

join and subquery performance. Industry standard SQL is supported but a native API,

which is intuitive to learn and use, delivers truly groundbreaking performance results.

The IMDS is able to leverage the multi-core architectures becoming common in

companies, university research labs, and government. With these capabilities and

advantages well established, potential users of IMDSs have greater reason to move

toward the use of the new technology, to secure their own advantage or to match the

newly established performance standard when competitors deploy IMDS-based systems

for time-sensitive, data-intensive applications.

i See http://www.wintercorp.com/VLDB/2005_TopTen_Survey/TopTenWinners_2005.asp. The Winter

Corporation’s survey examines results from disk-based databases. Applying such research to in-memory

databases amounts to new terrain, and we believe the report you are now reading explores its furthest

boundaries to date.
ii On-disk databases get slower as they get bigger because b-tree indexes get deeper. Each level in a b-

tree tree equates to one logical disk I/O, so when a b-tree goes from 3 to 4 to 5 levels deep, the number of

I/Os to find a given value, either for a search or to find a value's position in the b-tree for an

insert/update/delete, is greater. Thus, the bigger the database, the more average logical disk I/Os per index,

and the slower the performance. In-Memory Database Systems also exhibit this (witness the 20% drop in

ingest performance), but with much less of a performance drop-off. The difference between 3 and 5

memory operations compared to the difference between 3 and 5 disk operations is huge, so IMDSs incur far

less overhead than on-disk databases as database size grows. Plus, the indexes in IMDSs are ‘leaner’ (no

duplicated data), so the nodes don’t fill up as fast and that keeps the index more shallow.

